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ABSTRACT

1. Introduction: light quantum theory and quantum electrodynamics.
2. Fxtreme light quantum theory; spin of quantum; wave equation for quanta;

eigenwerte and solutions of the equation; electrostatic quanta; angular momentum
and selection rules; Lorentz covariance; theory of the charge-free field; quanta and
electrons.

3. Quantum electromagnetics; reformulation to treat progressive and spherical
waves; integrals of momentum and angular momentum; new introduction of light
quantum equation; distinction between field and corpuscular theories; zero point
energy, negative energies, and electromagnetic mass.

4. Interaction of quanta and charges; critique of light quantum theory.

'HE quantum theory of the electromagnetic field' gives a unitary treat-
ment, on the one hand of the electrostatic fields, and, on the other, of the

theory of radiation. The distinction between electrostatic and radiation fields

may be preserved in the general theory; for it is possible to put, on this theory,
the total energy of a system of field and charges in such a form, that the con-
tributions from the two fields remain distinct. In this total energy there are,
in addition to the kinetic energy of the charges, terms of three kinds: (a) the
electrostatic interaction energy of the charges with each other and with them-
selves; (b) the energy of the light quanta, to which must be added an infinite
constant, corresponding to a half quantum of energy for each component of
the radiation field; (c) the interaction energy of the charges and the radiation
field, which gives the magnetic interaction of the charges, the infinite proper
magnetic energy of the charges, and those interactions which give rise to the
absorption, emission, and scattering of light quanta.

The terms (b) and (c) are quite similar to those which appear in the
relativistic extension' of Dirac's light quantum theory. There are nevertheless
points of difference between the two theories. Some of these differences are
altogether trivial; but there are a few which are rather deep-lying. We may
cite a few examples of this divergence:

A. In the field theory, the electrostatic field is an integral and inevitable
part of the electromagnetic field; only when it is included can one establish
the invariance of the scheme under space rotations and Lorentz transforma-
tions; but in the Dirac theory there is apparently no place for an electrostatic
field, and Lorentz covariance may be established without considering such a

' W. Heisenberg and W. Pauli, Zeits. f. Physik 50, 1 (1929), and 59, 168 (1930).Cited as
HPI, and HPII.

' e.g. , I.Wailer, Zeits. f. Physik 61, 837 (1930).
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field; on the other hand the behavior of the scheme under space rotations had
not been investigated, and it has therefore not been possible to establish can-
servation laws for angular momentum, nor to derive from them the selection
rules.

B. There is in the Dirac theory no analogue to the infinite zero point
energy which, on the field theory, must be added to the energy of the quanta
in the radiation field. On the other hand we should expect in a completely and
consequently corpuscular theory of light to meet with negative energies for
the quanta; there is apparently no analogue to these negative energies in the
field theory.

Of course all these points are not unconnected; it will be in part the pur-
pose of this paper to study the connection between them, and to see which of
the points of difference arise from an incompleteness of the present theory of
quanta, and thus may be dissipated by extending the theory, and which are
fundamental and persist. It will turn out that in all the points mentioned
under A, the light quantum theory, when properly extended, is in full agree-
ment with the field theory; but that in the points of difference B, there is an
irresoluble disparity between the two theories. But before we may profitably
make the comparison, we shall have on the one hand to develop a somewhat
more complete light quantum theory than that of Dirac; and on the other
to make minor formal changes in the Heisenberg-Pauli field theory. It will be
easy then to answer the questions which we have put.

2.

We shall begin by developing an extreme light quantum theory, and for-
get for the time all connection with Maxwell's equations. We shall postpone
too a treatment of the interaction of quanta and charges, for this treatment
is most readily given after the connection between light quantum theory and
quantum electrodynamics has been established. Our present problem is to
find the wave equation for the de Broglie waves of the quantum; the theory
of the field we shall then obtain by a suitable quantization of the de Broglie
amplitudes.

In obtaining the wave equation we may be helped by a consideration of
the integrals of angular momentum for light quanta. There are in particular
two selection rules for the absorption and emission of radiation by matter,
which should follow from the conservation of angular momentum, and the
properties of the quanta which appear or disappear. These rules apply strictly
to angular momentum measured about a space fixed point, and only with high
approximation (see Eq. (9) ) to that measured about the center of mass of a
heavy atom. The rules assert: I. That the component of atomic angular mo-
mentum parallel to the direction of motion of the quantum absorbed or
emitted changes during the process by one Bohr unit; the sign of the change
is determined by the polarization of the quantum; II. That the total angular
momentum of the atom may not remain zero during the process of radiation.

There is a third more qualitative rule, which asserts that the probability
that on emission or absorption there be a change of more than one unit in
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total atomic angular momentum, that this probability is small when the wave
length of the light ) is large compared to the dimensions a of the atom, and of
the order

for a change of atomic angular momentum of 1+8 units. To establish this rule
one must know something more of the interaction of quanta and charges be-
yond the validity of the conservation laws; we shall be able to derive it later.

But these rules already tell us what we need to know: the component of
angular momentum of a light quantum parallel to its direction of motion
must be plus or minus one Bohr unit, according to the polarization of the
quantum; the total angular momentum of a quantum about any point must
be an integral number of Bohr units, and may not vanish. If these statements
are true, the conservation laws will give us the selection rules.

It should be observed of course that these rules refer to the eigenwerte of
the angular momentum. There are many radiation processes in which the
components of angular momentum of the atom are not determinate; but if we
render them determinate, by the use, say of magnetic fields and circularly
polarized light, then the rules will hold. We may also mention that the
second and third rules, which refer to total angular momentum, could be de-
rived classically, and that this is in fact historically the origin of the selection
rules. But classically the first rule makes trouble; for a strictly plane electro-
magnetic wave has no component of angular momentum parallel to its vector
of propagation. Such a component can not arise from orbital angular momen-
tum; one may, if one chooses, ascribe it to a spin of the quantum. But unlike
the electronic spin, the spin of the quantum is a whole, not a half unit; yet it
has two, and not three-eigenwerte; zero is not an eigenwert. Further, the total
angular momentum of a quantum may not vanish; spin and unit orbital angu-
lar momentum may not be antiparallel. These are the facts which must guide
us.

Now the second order relativistic equation which we should try first for
our wave equation is the equation of the retarded potentials, which might
serve for a particle free of forces and of vanishing mass

This equation is in several respects unsatisfactory. Here, just as for the elec-
tron, we should want a linear equation, in order to obtain a suitable density-
fiux vector with vanishing divergence. We want, too, more than one kind of
quantum for given vector of propagation, since we must describe somehow
the polarization of the quantum. Also the integrals of angular momentum
come out wrong. The corresponding operator is

The eigenwerte of the component Xh/2a parallel to the vector of propagation
are zero; and the eigenwer te of the total angular momentum /, with
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f(f y 1) = (~~2/h~)l. ~ (2)
are0, 1, 2, . . . .

Now some years ago Jordan suggested that we take account of the polar-
ization of light quanta by using' Pauli's spin matrices d. With their help we
can factor (1), and obtain the two component equation

[(d q) + B,]P = 0.

Here lf no longer behaves as an invariant under space rotations, but as a
spinor of the first rank. We know, however, that it will be impossible to
associate such a spinor with any electromagnetic field strength or potential;
for the whole of classical electromagnetics involves vectors only. Here the
angular momentum operator is

h
L = (h/2s. i) [r g V] + —u

4z

and gives for the eigenwerte

3 5
), =+ — 1= —) —) —~ ~2' 2 2 2

This suggests that we should try a three component theory. We introduce
a new

4 = (4i A, A)

and in place of the d; three three-row matrices 7.; which are the components
of a vector

v'y) T2) 73

We let the 7; satisfy the commutation laws

[~x~] =i~

so that they have the eigenwerte 0, + 1. We shall have occasion to introduce
explicit matrices for the 7; later. We write now for our wave equation

{(&'&)+ ~~]4 = 0

The properties of the solutions of this equation are easy to study. The
density —fiux vector has the components

pp; cps. ;P

and on the basis of (4) its divergence vanishes. Thus cr plays in some respects
the part of the velocity; the eigenwerte of the components are 0, + c. Further
the energy and momentum are given by

E = (hc/27ri)B„~ = (h/2s i)V
3 P. Jordan, Zeits. f. Physik. 44, 292 (1927).
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so that (4) is just

As in Dirac's equation for the electron, velocity and momentum may have
opposite sense, and the energy may be negative. To each value of the mo-
menta, there correspond three solutions of (5), with the eigenwerte

E=O, +Pc.

If we look for monochromatic solutions of (4), setting

we And

From this we deduce

(~ V)N = z&ezz. (6)

(6a)

Thus any zz constant in time is a solution of (4). Solutions which vary in time
must satisfy (1).

We may learn more of these solutions by considering a special case. %e
look for solutions in the form of a plane wave, so that they depend upon the
coordinates only through the common factor

~i 1cz

We may then take rz diagonal, and obtain the three solutions of (6)

G) = kc)

0)

M = kc)

NI ——0;

Ng = 0;

02 = 0;
I = 0'~'

2

N2 = 0;

N3 ——0;

N3 = 0~

gi 1cz.
3

(6b)

Now with this choice of v3, the ui transform under a three-dimensional rota-
tion like the components of a spinor of the second rank

~

~

~

zz& 2-"ze'e(x + zy)

zzz 2
—'~ze—ze(x —zy) .

The solution with co = 0 thus has the vector U of which the u's are the "spinor
components" parallel to the vector of propagation; whereas for co/0, this
vector lies in a plane perpendicular to the vector of propagation. This sug-
gests that the solutions with co =0 will turn out to have something to do with
the static solutions of Maxwell's equations, and that the solutions with
co@0will be connected with the light quantum solutions.

Note on no/ation. We shall have, in the following to distinguish between
three and four vectors, and their spinor components. In general we shall use
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capitals for the vector, small letters for the spinor, components; further we
shall use latin indices for three-greek indices for four-vectors and spinors, and
shall use a raised index for contragredience, and adopt the summation con-
vention. Since we shall not use the spinor components in four dimensions, but
rather components which are half spinor and half vector, we give here a table
of the notation and components:

Thus

$0 ~ ~

$ ~ ~ ~

~ ~ ~
Cl

$4 ~ ~

$P ~ ~ ~

[5,, s„, s, I

I2—"'(S, + iS„),

f
2-i'i(5, —iS„),

[5„5„,s„s,I

js„s„,s„—s, I

I~-i~i(s + is)
[2 "'(Si —is„),

—5 2 '"(S, —iS„) I

—5„2-""(5,+ is„) I

—5„2 '&'(5 —iS„), 5, }
—5„2—'»(5 + is„), —s, I .

Finally, we shall use 0, for the spinor components of the gradient V;.
We may define the angular momentum operator by considering an

infinitesmal rotation of coordinates. Thus, if we make such a rotation 5~

about the s-axis, and if the corresponding change in the u's is 5u, then the s-
component of the angular momentum L, is given by

6u = (2iri/h)L, ii8, = [x(B/8&) —y(B/Bx) + ir, ]iib,

So we find
L = (h/2iiz) [r X P] + (h/2ii)i.

The Eq. (6) is invariant under a space rotation, and the components of L
are constants of the motion of the quantum. In particular, for plane wave
solutions, the component of L parallel to the vector of propagation commutes
with the momentum, and has the eigenwerte

co=0; X=O
co —0; ) =+1.

The total angular momentum defined by (2) also commutes with the energy,
and has the eigenwerte

t =0, &, 2,

The value 0, cannot, however, occur except when ~=0. For if l=O, then

~ = —i[r X V].

If we put this in (6), we get at once

o&N = —([r X V] V)zc = 0.

Thus we see that (6) gives to true light quanta, with u/0 the correct inte-
grals of angular momentum. From these, and the conservation laws we may
deduce the selection rules I and II.
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Now to each vector of propagation there are, as we have seen, three
solutions of (6); but if we fix the energy, choosing it for instance positive,
only one solution survives; we get only one possible value for 'A, and thus only
one kind of polarization. If we wish to exclude negative energies, then (6)
will not give us all the solutions we need, and we shall have to add another
set, the solutions of an equation analogous to (4), but with matrices r' which
satisfy, instead of (3)

(3')
Then we write

(4')

The angular momentum is now

L' = h/27ri[r X 7] —h/2 x~.

To each h and coAO, we now have two solutions of (4) and 4'), with X =+ 1

respectively. We can of course write the two systems (4) and (4') as one, if we
use a six component wave function, and reduced six row matrices, which
have the 7's and the v"s along the main diagonal. In this system of equations
we can exclude by an auxiliary condition the solutions for which the energy
is negative. We have only to use the improper operator QA which was intro-
duced by Landau and Peierls, and to write"

But when we come to introduce the interaction energy of quanta and charges,
this condition will no longer be consistent with the equations of motion for
the/'s, since we shall always have terms in this interaction which give rise to
a spontaneous emission of quanta of negative energy. It is not possible in
this theory to exclude quanta of negative energy.

It will be convenient for us later to have the solutions of (6) which make I
and L„=m, say, diagonal; these may be obtained in polar coordinates, with
the polar axis parallel to s. For co& 0, 140, we get two such solutions, with

each of the form
(m) (rf, )u;"' = e'»& Z C», sJ, ,

s=o,+1

Here pI =m+1, p, 2
——m, p3 ——I—1; the P's are associated Legendre functions

of cos 0, the I's may be given in terms of Bessel's functions by

(kr)I = (hr) J&.pu2

and the c's are constants which do not in general vanish, and which take on
different values according to whether ~ = + kc. For the choice of the matrices
r; given in (10), the c's may be taken real, and to satisfy

(m) (—m)
Csl = Cse j

(m) (-m)
esp =cso j $=0, + 1.

"Landau u. Peierls, Zeits. f, Physik 62, 188 (1930).
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For f =0, &u =0, and for ip; i
=l, the first term on the right side of (8) does not

appear.
We may use (8) to derive the third of our selection rules. We shall show in

the next sections that the probability of the emission or absorption by an
atom of a quantum in a state r is given essentially by the square of the modu-
lus of the integral

8 = dVu;"s'

where the vector S is the current density vector of the atom. Now when the
wave-length 2~r/k of the quantum is large compared to the dimensions u of
the region in which S is appreciable, we may expand the functions I in the
integral 8 about the center of mass of the. atom, taken as origin, and station-
ary. Thus we find that if l„=1+5, 8 is small of the order

(ak)'.

This makes the probability of absorption or emission of a quantum with
/ = 1+8, small of the order

(uk)"

and gives, in conjunction with the conservation laws for angular momentum,
the third of our selection rules. By a similar argument we may take account
of the recoil of the atom as a whole upon absorption or emission. This recoil
will be small when the atom is massive compared to the quantum; it gives rise
to a probability for a violation of the selection rules for angular momentum
measured about the center of mass of the atom. This probability is of the
order

(h Piiif r) ~

where 3II is the mass of the atom. For ordinary light this probability is ex-
tremely small.

Although, as we have seen, our fundamental Eq. (4) is covariant uiider a
space rotation, it is not Lorentz covariant. From (6a) and (6b), we see that
the reason for this noncovariance is the occurrence of zero eigenwerte for the
r's and for u. This suggests at once that (4) is a degenerate form of a set of
four simultaneous equations for four 0"s, involving three four-row matrices
p;, of which the v. ; are certain three-row submatrices; and that these four row
matrices p; must have the eigenwerte + 1, each twice. A simple investigation
of the behavior of (4) under a Lorentz transformation will make this clear.

Let us take for definiteness our 7; in the form

( 0 0
i ( 0 1 0

o0&~0+10
( ' 0 0

o o

0

(10)



This gives us for the transformation properites of the+; under a three-dimen-
sional rotation

Now consider a Lorentz rotation in the s —t plane. We should expect%'2 to
transform like the s-component of a covariant four-vector; let us call the
t-component of this vector@4. Then we see that in the transformed Eq. (4),
new terms appear which give just the four-divergence of 4. This suggests
that we should so extend our matrices r; that the fourth row and column refer
to+4, and that the fourth equation makes the four divergence of 4' vanish.
Thus we may take

0+i 0

0+i 0

0 —i 0 —1

0 —1 0

0 1 0 —i
1 0+1 0

0+1 0+i
I+i 0 —i 0

1 0 0 0

0 0 0 —1

0 0 —1 0

0 —1 0 0

This gives us pP =1.The p; each have the eigenwerte + 1, each twice; they
no longer satisfy (3).

The system

[ (y v) + ~~ IS' = 0 (&2)

is now Lorentz invariant. Our Eq. (4)

follows from (12) if we set

I(r v)+8, If = 0

llt4 = 0. (&3)

But we obtain from (12) the further condition

O'P; = g;lit; = 0.

The three divergence of the three vector 4' must vanish. This condition
makes the solutions of (4) for which co=0, reduce to constants. Here again
we see the connection between these solutions and those solutions of Maxwell's
equations which give the electrostatic field: in the absence of charges there
may be no such field.
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The equations (4) and (14) are themselves Lorentz covariant, if we trans-
form the rP's, not as the spatial components of a four-vector, but as the 4 —k
components of a self dual six vector. This six vector +„„may be completely
determined by giving its 4 —k components in terms of the P's:

0'4& ——~/2'~'(ll & + f,); +42 ——1/2"'(f& —P3) /
4'43 ———if// %44 = 0.

We can of course use a similar procedure for making (4') Lorentz covariant.
These equations may all be written very simply in spinor notation. For

(12) we get
fi.Q/t O

while for the system (4) and (14) we have
8

g y/i —o

For the system corresponding to (4') then

(12//)

4

0 (12")

These last two systems have the same form as Maxwell's equations for the
empty field. ' We should therefore expect to have to add on the right hand
side of these systems essentially the four-vector charge and current density of
matter; we should then have the correct interaction between quanta and
charges. The precise form of these terms will be given in section 3.

This spinorial form for the wave equations lets us see at once a very grave
and inescapable defect of the theory. The equations themselves are co-
variant; but the Lagrangian from which they and their complex conjugate
equations may be deduced is not a scalar density. This has important and
disastrous consequences, for it means that the energy density of the quanta
is not the 4—4 component of a second rank tensor, nor the momentum density
the 4—k component of such a tensor. Further, and equally disastrous, the
density and flux of the quanta do not form a four-vector, so that these quan-
tities may surely be given no simple physical meaning. All of these results
follow at once from the circumstance that one cannot construct an in-
variant which shall be linear in

and linear in the complex conjugates of the P's:

nor make a four vector bilinear in P"' and P™.This is impossible both for the
system (12') and the systems (12"); and we can see at once that it will be
impossible for any system in which the P's are spinors of even rank —i.e.
world vectors and tensors. If we wish to have a positive definite particle
density of the form

» 0. LaPorte a~d G. Uhle 1bf ck, Phys. Rev. 37, 1380 (1931).
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which shall be the four component of a four vector, then our wave functions
must necessarily be spinors of odd rank. This is the essential ground for the
impossibility of a completely satisfactory light quantum theory.

The fact that the energy density of the light quanta cannot be written in a
proper form means that the conservation laws for a system of quanta and
charges cannot be made covariant. We shall see another expression of this
difficulty when we try to write down the interaction energy of the quanta
and charges. And this difficulty will persist as long as we want to write our
energy density in the form

If we give up this condition, which is essential to a truly corpuscular theory,
we see at once that

gives us a satisfactory energy momentum tensor; this leads then to a system
completely equivalent to classical electrodynamics, and the equations (12")
become then just Maxwell's equations for the empty field. By a suitable
quantization the classical theory may of course be made to give a theory o~

the light quantum field. But as already pointed out by Landau and Peierls,
it is then no longer possible to define a positive definite light quantum density,
nor to treat the quanta as particles.

As long then as ~e are concerned only with the empty field, our equations
will be satisfactory. We have only in some coordinate system to set up (4),
and to retain those solutions for which o. does not vanish. This procedure will
be Lorentz' invariant, and will give the correct eigenwerete for the dynamical
integrals of the quanta. We cannot however extend our theory without great
arbitrariness to the case where charges are present, and interact with the
quanta. To do this we have first to study the connection between our wave
functions 4 on the one hand, and the electromagnetic potentials and their
treatment in the quantum mechanics on the other. It is this inability to find
without the help of classical electromagnetics the correct form for the inter-
action between quanta and charges that makes us believe that the light quan-
tum theory is not in the end very fundamental, and that the analogy between
light quanta and electrons, however attractive from the formal point of view,
is not very deep lying. But before we pass to the electrodynamical theory, we
may say a few words of this analogy.

If we wish to make the transition from the theory of a single quantum to
the theory of a field, in which many quanta satisfy the Einstein-Bose sta-
tistics, we have only to write down the & orrect commutation laws for the wave
amplitudes%' .

The theory of such a system is very simple, and very closely analogous to the
field theory for Dirac electrons. The Lagrangian is

I. = —(hi/2s. i)PI (p V) + 8(}f
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Setting%'4 ——0 gives us the supplementary condition (14). and the new Lag-
rangian

L = —(hc/2+i) P ( (~ V) + 8, [P. (16a)

We may list here some of the principal operators Q which gives us the dy-
namical integrals of the field, together with the eigenwerte which we find for
the integrals of these densities: 0 =fd VPIIP

Operator Q. Eigenwerte of Q.
Density. . . . . . . . . . .1. . . . . . . . . . . . . . . . . .0, 1, 2

Flux. . . . . . . . .cr. . . . . . . . . c(0, +1, +2 . )
Energy. . . . . . . . . . . . (kc/2'(~ V). . . . . . . . hv, (0, +1, +2, )
Momenta. . . . . . . . . (h/2s. i)V. . . . . . . . . . . . .kv,/c(0, +1, +2, )

. . . . . . . . . (h/27ri[&XV]+h/2'~. . . . . h/2x(0, +1, +2 )
momenta

It should be observed that the energy may be positive or negative, and that
there is no zero point energy.

Now we shall see in our next section that it is possible, by a somewhat
different choice of Lagrangian, to pass from this extreme light quantum
theory to quantum electrodynamics, in which the energy in the field is al-
ways necessarily positive. Ke might now ask the question: Is it possible to
find a similar trick for the theory of the Dirac electron, so that, perhaps at
the expense of an infinite zero point energy, there would be only positive
electronic energy levels? It turns out that we can find such a trick, rather
simply, and we shall do so in our next section. (See Eqs. (37) and (38).) In
this treatment a group of noninteracting electrons has only positive energy
levels. If, nevertheless, we do not believe that any method of this kind will
be of fruitful application, it is because of two major difficulties which appear.
The one difficulty is this: if we apply the method to the study of a single elec-
tron in a field of force, we find that the dynamical problem is always de-
generate: for each energy there are wave functions which we should asso-
ciate with the motion of particles of positive and negative charge-mass ratio
e/m respectively. Radiative transitions between the corresponding states no
longer occur; but we find energies and wave functions which are not found in
experience; and in particular Klein's paradox, the abnormal transparency of
high potential barriers to slow electrons, still persists. The other fundamental
difhculty is that with this method, using the new Lagrangian (38), it is not
possible to make the electrons satisfy the exclusion principle. For these rea-
sons we cannot regard this attempt to resolve the difficulty of negative elec-
tronic energies as satisfactory. We shall not exploit further the analogy be-
tween quanta and electrons.

3.
We turn now to the quantum theory of the electromagnetic field. The

Lagrangian function for the empty field is

gg ——I/8x(Z2 —~ ) = 1/16Ã [V~Cy —Vpe~] (17)
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Here E and H are the electric and magnetic field strengths, and C the four-
vector potential. When charges are present we must add to (17) the term

L;=SC
where S is the four-vector charge and current density. By a variation of the
4's we may deduce Maxwell's equations; by a variation of the S, we may,
after the addition of suitable inertial terms, deduce the equations of motion
of the charges.

If, as in HP JI, we simplify the analysis by setting

then the four Maxwell equation

C4=0 (19)

div E+ 4mp = 0 (20)

no longer follows from a variation of the C,'s in I; we have to add (20) as a
supplementary condition on our wave functions, in addition to those which
now follow from the variation principle: i.e. our wave functions, Ji say, must
fulfill

[div E + 4np]F = 0. .

The momenta canonically conjugate to the 4; are

(20a)

II. = ——E.
4mc

We thus have the commutation laws

(21)

The Hamiltonian is

(21a)

H, =
Jt

dV[2s.c'lI '+ I/Bs. [g X C]'] IT = —JtdVS C (22)

The components of momentum are

Jy =
Jt dVII;Egg;. (23)

We shall see later the consequences of this disparity in form of the operators
for energy and momentum; for the present it will be enough to remember that
in spite of this, and in spite of the convention (19), the scheme is Lorentz
invariant, in the sense that the equations fulfilled by all gauge invariant
quantities, such as the field strength and energy, are covariant under a
Lorentz transformation. The equations for the C"s themselves are not co-
variant; but one may, after a Lorentz transformation, return to the original
equations by a new choice of gauge (Umeichung).
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In nearly all the applications of the theory, it is convenient to introduce
normal coordinates for the empty field, and to take the amplitudes of the
corresponding oscillations as dynamical variables to replace the C 's. This may
be done in a number of ways. Thus in III'I and III'II, potentials and field
strengths are expanded in trigonometric functions of the coordinates, in such
a way that the tangential component of 0 and the normal component of F
vanish at the boundary of a fundamental cube of dimensions L, which is
chosen large compared to the region in which there are charges. This is equiva-
lent to enclosing the system in a large box with perfectly rejecting walls; and
the orthogonal functions represent plane polarized standing electromagnetic
waves. Now there are many problems in which it is convenient to have the
electromagnetic waves correspond to definite values, say, of the momentum
or the angular momentum. For such a treatment one has to use new boundary
conditions, and new orthogonal functions. When we carry through the neces-
sary analysis, we shall be able to see very clearly the points of analogy and
the points of disparity between the field theory and the light quantum theory;
and this, rather than the convenience of the new schemes in application, is
the reason why we shall give in some detail the elaboration of methods sub-
stantially equivalent to those already in use.

There are three cases which we shall consider; of these the first may be
regarded as more or less preliminary; the orthogonal functions are to repre-
sent: (a) plane polarized progressive waves of definite momentum (b) circu-
larly polarized progressive waves; (c) spherical waves of definite angular
momentum. The boundary conditions for these three cases are pretty obvious.
In order to have only an enumerable set of oscillations, we shall still con-
sider a finite but large volume U. In (a) and (b) we may take this to be a cube
of length L, and may require that potentials and field strengths be periodic
in this cube. As long as the dimensions of the cube are very large compared to
those of the region to which the charges are confined, we may neglect the
image fields of the charges in neighboring cubes, and our formulae will give
us results which may be readily interpreted. For (c) we inust take our funda-
mental volume spherical, and may for convenience demand that the poten-
tials vanish on the surface of the sphere. It is in all cases quite easy to see
which properties of the field are affected by the boundary conditions, and
which are independent of them.

According, for (a), we set

C; = (4~c/kU)'~' g Pf;iiqqie'&& ~i

Ie l=l

II; = (k/4iriU)'I' Q Qf„&'Prie'o'"

(24)

where'=�(ki, ki, k3); k;=(2z/I)ri, :; n;=0, +1, +2, and where f;i is
given by the square matrix

4 Cf. for this E. H. Kennard, Phys, Rev. 3'7, 458 (1931).
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i/f —& 1l—
1 &2(212 + 2 2)-'&2

2 —2,(2,' + 22')-"'

3 0

2123(21 + 22 ) 21

2222(E'1 + 22 ) 22 With

(21 + 2 ) 1 22 klk ——
~

k;~/k.

In order that potentials and field strengths may have at all points real
eigenwerte, we must have

g
—Il = gll; P—1cl P1kl ~ (25)

We write now k) 0 when at least two components of k are not negative, and
k(0 when at least two components are negative. If k)0, then gk(0. We
use Z~' for a summation over all k) 0. We get then the commutation laws
(from (21a))

[g)k, , q, , ] = [pkl, qk 1.] = (h/22li)filk fill , .k, .k' ) 0

[pkl& pk'l'] [qkl& qk'l ] '[pkl& qk'l ]'[pkl& qlk] 0& k& k )
For the energy we find

H, = E, + g' QEkl, E, = g'kcpkkpk2, Ekl ——kc j12klpkl + pklqkl j (26)
lc l=1

and for the momenta

J; = g' p J;,„;J;,„= ik„jpklqkl —pklqkl } .
Is l=1

(27)

The first term in (26) gives the electrostatic energy, and may be evaluated
at once by the use of (20); it gives

E. = —; )[dV JtdV
—"

The second term in (26) gives the proper energy of the light quanta. Since

[Ekl I ', k1]

energy and momentum may be simultaneously reduced to diagonal form.
To do this we make the transformation

1/2 —I 1/2—i(k/4&l) '"
j q&1lr&kl —-r2kl 'qkkl };.

Pkl



740 J. R. OPPENHEIMER

where X;kl ——0, 1, 2 and

I"'k(f(N(k 1 ) = f(N, k i
—&'(f(kk &ll )I',ki

—1 —1
I'lklf(N;k 1 ) = f(N, k 1 + (')1;f(kk f(ll )I'(ki.

Then we get for energy and momenta

+kl hk&/221(N1kl + N2kl + 1) hPkl (Nlkl + 2 + N2kl + 2 j
(29)

1;kl = hk;/22r(N111 —Npt, ) .

If we now write for the light quantum terms in the potentials

(4~p/kP')1/ +2( gfkI~ ,pi(k. r) + g p
—i(k.r) }

k l=l
(3o)

there are four terms in the light quantum interaction energy S;@

2
1/2 —1 1/2

S,4(,' = —i(hC/kV) "2 g' gS;f;1"I (N, k(I'lkl —I' 2k(N2k)(e' (k' )

-1 1/2 1/2
(I lk(Nlkl NpklP2kl)& ( ' ) } (31)

which involve the factor e'&k"). For each kind of polarization there is a term
which gives the absorption of a quantum of momentum kh/22r, and one which
gives the emission of a quantum of momentum —kh/22r.

There is a zero point energy, but no zero point momentum. We see
formally that this difference arises from the circumstance that the J; are
linear, but Hp is quadratic, in 8/Bx„It is th.is same circumstance that gives us
both positive and negative momenta, but only positive energies. If we were
to give up the condition that potentials and field strengths were necessarily
real, then the energy would no longer be positive definite; in addition to (25),
we should also have solutions of the form

g —kl 'f)t kl j P —kl P klj (25a)

and our energy would have positive and negative eigenwerte

+kl = hl'kl t Nlkl N 1kl + N21(l N 2kl j ~ (29a)

There would be no zero point energy; but in such a system there would be
spontaneous gain in energy by atoms at the expense of the field, as well as
spontaneous emission. The light quantum theory gives a situation very much
like this.

The interaction terms (31) are precisely those obtained by a direct rela-
tivistic expansion of Dirac's light quantum theory; they are the most con-
venient form for the study of the emission, absorption and scattering of hard
light.
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To treat (b), circularly polarized light, we may make a preliminary trans-
formation

q =q =2 '"(-q. + 4,);e = —c;
zr" = zzz = 2—z&z(II, —i'„);zrz = —IIz.

(32)

The new commutation laws are

[~ (2'), 4;(2")] = (k/2~i)c, ,a(P —2")

[~ 9'), ~ (2")] = [y,(r), y, (2")] = O.
(33)

For the Hamiltonian we get

He ——2zrczzrizr; + 1/8zr [(~ 7')(f (z: V). &k}

where the r's are given by (10). Consider then the equation

(z, V)zz = i&vzz

(34)

This is just our wave equation for quanta. We shall choose as our orthogonal
functions the normalized solutions zz; of (4), which depend on the coordinates
only through the common factor

e'&z' ~'; k; = 2zrzz~/L; zzf = 0, + 1, + 2,

We have studied these solutions, and know that to each k there correspond
three solutions, with co = 0, + kc. Here we must normalize the argument of the
solutions, which we do by requiring that in everv case

Q~ = ge'(& &&

where g is real. Then, demanding as before that potentials and field strengths
have real eigenwerte, we make the expansions

4; = (4zrc/k)'&z Q' Q[qz., zz
""+ q&, zz

—'"I

zr& = (4zri/k) '" Q' Q[p&, zz' ""+ pz, I' (35)

Here, of course,

This gives

Q = Q Q = Q2) Q = Qy.

[p'-, q'- ] = [p... q'. ] = (k/2 ')~- ~..
[p~., qa .] = [pa. , qa .] = [pz. , p~ .] = [q~., qz .] = 0

and, for the Hamiltonian

Ho = Z'kc Zp~-p~- + Z' Z I
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As before, the terms with a& =0 give the electrostatic energy (28). The terms
with co/0 give an energy

E„=h , cu /2x(N)c„+ N.g„+ 1)

and momenta

——h k, /27r (N, g
—N2p, ) .

For the special case that all X's vanish except when k is parallel to s, the
component of angular momentum parallel to s may be made diagonal, and
has the eigenwerte

(I/2 )I Q' (N, —v, .) + Q (Iv, —.v„,)I.
k, cu) 0 Ic, cu &0

This leads again to the first selection rule of the preceding section.
The interaction energy (31) takes the form

1/2 —1 1/2
S,C.,

' = z( hc/k)'" g' +Is' u(N, ~,„I',k„—I',„N„.)

1/2 —1 1/2+ &'u,—-(N„.„r„..—r„„N„,„)I .

Here, as in the light quantum theory, the solutions with co/ 0 contribute noth-
ing to energy, momentum or field, as long as there are no charges present.

As another example of the use of (34), we may consider the case (c), using
for orthogonal functions the solutions of (6) in polar coordinates which vanish
on the surface of a large sphere. We have given such solutions in (8); we
normalize their phase by choosing the c's real. Here again the solutions with
+=0 give the electrostatic energy (28). For the light quantum terms in the
potential we have

i 1/2 —1 1/24" = —i(hc/k)"' Qu o(N„„p.„—r„,X. o)
cu, l, m=0

—i(hc/k)'" Q
cu, l m) 0

I/2 —1 1'2
I u, (N, „(„I',„( —I'..( cV, (,„)

'e 1/2 —1 1/2+ ca, lu, —m(V2calmP2r Ina Plralm&Vlralm) I

The energy of the light quanta is

JI, = g gh[ f/2 (.V,„,.+N... +1)+ th)~[/2u(N„„+-;).
cu, l m)0 cu, l, m=0

For the s-component of angular momentum we get

L, = (h/2') Q Qm(N)„( —,V2„( ).
m)0

By considering the possible changes in total angular momentum when one
quantum is absorbed or emitted, we may derive the second and third selection
rules of the preceding section.
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Although in both the field theory and the light quantum theory we have
had occasion to use the equations

(cV)m = icom; (cV)P+ Bgg = O;

there are, even for the empty electromagnetic field, fundamental differences
between the two theories. These may be summarized by comparing the
Lagrangian functions of the two theories

LQ: —(hc/2~i) P[(~ v) + 0(]@ (36a)

Field: (36b)

This difference brings with it disparate definitions of the conjugate momenta

LQ ~; = —(h/2~i) j;
Field:

and of the Hamiltonian

~; = —(1/4wc) (B,y;)

LQ: (hc/2~i) j(~ ~)y = c~'(~ ~)y;

Field: (1/8lr) I ~

l9~$
~

'+
~

(~ V)y
~

'I = 21rc'1r'm" + (1/81r)
~

(~ v)y [
'

and accounts for the occurrence, in the one case of negative, in the other of
infinite positive energies.

The nonoccurrence of a zero point energy in the light quant-um theory is
of interest in connection with an investigation' of Heisenberg on the electro-
magnetic mass of charges moving with a velocity close to that of light. One
must require of a correct electrodynamics that it should give, for the electro-
magnetic energy-momentum vector of such a charge, a four vector the length
of which grows, in comparison with the magnitude of the time component,
the energy, negligible as the velocity approaches that of light. Now Heisen-
berg showed, that with the IIP field theory, the vector did not have these
properties, and that the reason for this failure lay in the infinite zero point
of the field. In this respect the light quantum theory is more satisfactory.
But as we shall see in the next section, when we come to consider the inter-
action of quanta and charges, the light quantum theory gives not only to the
magnetic proper energy, but also to the magnetic interaction energy of
charges, a value radically different from that obtained on the field theory, and
one hardly to be reconciled with experiment.

For the treatment of the Dirac electron outlined at the end of the last
section, one has only to make in the Tetrode Lagrangian for the electron

(hi/2+i)/[8, —(a v) + iyap]P (7 = 2+me/h) (37)

6 W. Heisenberg, Zeits. f. Physik 65, 4 (1930).
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a change analogous to that from (36a) to (36b)

I
& O I

' —
I I('~) + iv«l& I

'. (38)

Here one has no condition on the reality of the f's, and one obtains two com-
pIete systems of terms, corresponding to (25) and (25a) respectively. In each
system the motion of a particle with positive and with negative charge-mass
ratio s/rn is represented. The particles necessarily satisfy the Einstein-Bose
statistics.

The interaction energies of held and charges given in this section have
all been derived from the electrokinetic term

in the Lagrangian. Ke have now to And what terms must be added to the
Lagrangian of the light quantum theory, to give correctly the electrostatic
energy of the Beld, and the elementary probabilities for radiative processes.

When we develop the 6eld theory by the methods of the last section, the
interaction terms (18) of the Lagrangian appear finally in two ways, and
give rise to the electrostatic energy and the energy of interaction of light
quanta and charges. When we set f4 ——0, the supplementary condition on the
wave function involves p:

div E+ 4xp = 0. (20)

With the help of this condition, the terms in the Hamiltonian which arise
from those expansion terms of

(1/8m. )E' = (2s.c')m.

for which the orthogonal functions correspond to +=0, may be evaluated;
they give the electrostatic energy of the 6eld. The terms in

5;e;

which appears directly in the Hamiltonian, may be divided into two groups.
The one group, for which the expansion functions correspond to co =0, may
be shown, as a consequence of (20), to contribute nothing to the energy. The
other group, for which the expansion functions correspond to co/0, gives the
interaction energy of light quanta and charges, and may always be put in
the form

i(hc'/
~

&u
~

)'i2 g(W, ii2r„ii„—I'„-i X„»'~„).

Here the u, are a complete set of orthogonal functions (e.g. solutions of (6)).
Now we may try to introduce into the Lagrangian of the light quantum

theory
I = —(hc/2si)y f(p V) + Bi]@
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interaction terms which will give these same results. These terms must (l)
have real eigenwerte; (2) be Lorentz invariant; (3) be linear in S, and not in-
volve the derivatives of 5, nor any other quantities referring to the configura-
tion of the charges; (4) be linear in a//a and Q. These conditions very nearly de-
termine the form of the terms. The condition (4) shows that we cannot hope
to find for the interaction of charges and quanta a form like that given by
the Hamiltonian theory in configuration space for the interaction of tvro
charges.

The conditions give for the most general possible form for the interaction
terms

S"6Q„+S"a$„ (39)

where a is some operator not involving the field quantities. It is possible to
find a formally satisfactory o;; but one has to choose a very quaint operator
indeed. The theory is satisfactory in the sense that it leads to the value (28)
for the electrostatic energy, and gives the same values as the field theory for
the probability of absorption or emission of quanta. This last assertion has
of course to be modified, because of the occurrence of auanta of negative en-

ergy, for which their is no analogue in the field theory.
This occurrence of quanta of negative energy has an important conse-

quence, in that it alters the value of the magnetic interaction energy of
charges. The calculation is altogether analogous to the field theory calcula-
tion, ' except that now half the quanta emitted or absorbed have negative
energies; and the effect of these processes gives a contribution to the energy
of opposite sign to that of the processes involving positive puanta. As a con-
sequence, one can no longer deduce Breit's equation for the second order
magnetic energy in fact the terms of second order in 2///'c vanish. This is of
course in Ragrant contradiction with experiment.

The operator 0, has to be chosen, to obtain the best agreement with the
field theory, in the form

i/4 ( IaaaC) 1/2f.

Here $ is an operator defined by the relations

This choice of u gives at once light quantum interaction terms

Sip'a = 2(hC)1/2 Qaa 1 2(Sa24 aT 1/2fa —SN fa 1+ 1 2)

of the desired form. Here again the terms from s'q; force =0 give no contribu-
tion to the energy. The supplementary condition introduce by setting P4 ——0
here becomes

1 djv ata 22r(hc) 1/24 —
wi/4/2 ~

/a
—1djv p = 22i(h2) &1'//24c~ p

' J.R. Oppenheimer, Phys. Rev. 35, 461 (1930).
~ G. Breit, Phys. Rev. 34, 553 (1929).



746 J. R. OPPEXHEIMER

With the help of this and the relation

we find for the energy in the field

O'P
Hn = (hc/2+i) j( dV&Bgg = g(k(o„/2r)E2 + 2 ~( dU dV

40 +0 [(r —r')
/

as required.
Against this formulation one may urge the gravest objections. Not only

is the form of the interaction energy derived entirely with the help of elec-
tromagnetic theory; this form itself is unsatisfactory because of the occur-
rence of the improper operator (.Attempts to avoid the introduction of $ lead
at once away from the corpuscular theory to an alternative formulation of
the field theory in terms of the complex vector E+iII. But to these formal
objections to the theory of light quanta one must add that the occurrence of
negative energies is in complete discord with experience, both in its direct
consequences, which would give an apparent spontaneous absorption of light
by matter, and in the value which it gives for the magnetic interaction energy
of charges. And we must recall too the difficulties which arose in section 2,
where we found it impossible to construct a scalar Lagrangian, a four vector
density and flux, or an energy momentum tensor for the light quantum field.
For all these reasons the theory developed in this paper is unsatisfactory.
It is not impossible that when the occurrence of negative energies for elec-
trons is fully understood, the theory of light quanta will be applicable.


